Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Mol Biol Rep ; 47(2): 887-896, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31734896

RESUMO

The genus Urochloa P. Beauv. [syn. Brachiaria (Trin.) Griseb.] comprises species of great economic relevance as forages. The genomic constitution for the allotetraploid species Urochloa brizantha (cv. Marandu) and Urochloa decumbens (cv. Basilisk) and the diploid Urochloa ruziziensis was previously proposed as BBB1B1, B1B1B2B2 and B2B2, respectively. Evidence indicates U. ruziziensis as the ancestral donor of genome B2 in U. decumbens allotetraploidy, but the origin of the genomes B and B1 is still unknown. There are diploid genotypes of U. brizantha and U. decumbens that may be potential ancestors of the tetraploids. The aim of this study was to determine the genomic constitution and relationships between genotypes of U. brizantha (2x and 4x), U. decumbens (2x and 4x) and U. ruziziensis (2x) via genomic in situ hybridization (GISH). Additionally, chromosome number and genome size were verified for the diploid genotypes. The diploids U. brizantha and U. decumbens presented 2n = 2x = 18 chromosomes and DNA content of 1.79 and 1.44 pg, respectively. The GISH analysis revealed high homology between the diploids U. brizantha and U. decumbens, which suggests relatively short divergence time. The GISH using genomic probes from the diploid accessions on the tetraploid accessions' chromosomes presented similar patterns, highlighting the genome B1 present in both of the tetraploids. Based on GISH results, the genomic constitution was proposed for the diploid genotypes of U. brizantha (B1B1) and U. decumbens (B1'B1') and both were pointed as donors of genome B1 (or B1'), present in the allotetraploid genotypes.


Assuntos
Brachiaria/genética , Genômica/métodos , Mapeamento Cromossômico/métodos , Cromossomos/genética , Cromossomos de Plantas/genética , Diploide , Genoma de Planta/genética , Genótipo , Poaceae/genética , Poliploidia
2.
Chromosoma ; 127(4): 505-513, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30242479

RESUMO

Analysis of chromosome pairing has been an important tool to assess the genetic similarity of homologous and homoeologous chromosomes in polyploids. However, it is technically challenging to monitor the pairing of specific chromosomes in polyploid species, especially for plant species with a large number of small chromosomes. We developed oligonucleotide-based painting probes for four different potato chromosomes. We demonstrate that these probes are robust enough to monitor a single chromosome throughout the prophase I of meiosis in polyploid Solanum species. Cultivated potato (Solanum tuberosum, 2n = 4x = 48) is an autotetraploid. We demonstrate that the four copies of each potato chromosome pair as a quadrivalent in 66-78% of the meiotic cells at the pachytene stage. Solanum demissum (2n = 6x = 72) is a hexaploid and has been controversial regarding its nature as an autopolyploid or allopolyploid. Interestingly, no hexavalent pairing was observed in meiosis. Instead, we observed three independent bivalents in 83-98% of the meiotic cells at late diakinesis and early metaphase I for the four chromosomes. These results suggest that S. demissum has evolved into a cytologically stable state with predominantly bivalent pairing in meiosis.


Assuntos
Coloração Cromossômica/métodos , Pareamento Cromossômico , Cromossomos de Plantas , Solanum/genética , Sondas de DNA/genética , Poliploidia , Solanum tuberosum/genética
3.
Genetics ; 208(2): 513-523, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29242292

RESUMO

Developing the karyotype of a eukaryotic species relies on identification of individual chromosomes, which has been a major challenge for most nonmodel plant and animal species. We developed a novel chromosome identification system by selecting and labeling oligonucleotides (oligos) located in specific regions on every chromosome. We selected a set of 54,672 oligos (45 nt) based on single copy DNA sequences in the potato genome. These oligos generated 26 distinct FISH signals that can be used as a "bar code" or "banding pattern" to uniquely label each of the 12 chromosomes from both diploid and polyploid (4× and 6×) potato species. Remarkably, the same bar code can be used to identify the 12 homeologous chromosomes among distantly related Solanum species, including tomato and eggplant. Accurate karyotypes based on individually identified chromosomes were established in six Solanum species that have diverged for >15 MY. These six species have maintained a similar karyotype; however, modifications to the FISH signal bar code led to the discovery of two reciprocal chromosomal translocations in Solanum etuberosum and S. caripense We also validated these translocations by oligo-based chromosome painting. We demonstrate that the oligo-based FISH techniques are powerful new tools for chromosome identification and karyotyping research, especially for nonmodel plant species.


Assuntos
Hibridização in Situ Fluorescente/métodos , Animais , Coloração Cromossômica/métodos , Cromossomos , Cromossomos de Plantas , Diploide , Cariótipo , Cariotipagem , Solanum lycopersicum/genética , Poliploidia , Solanum tuberosum/genética , Sintenia , Translocação Genética
4.
Plant Cell ; 26(4): 1436-1447, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24728646

RESUMO

Centromeres are composed of long arrays of satellite repeats in most multicellular eukaryotes investigated to date. The satellite repeat-based centromeres are believed to have evolved from "neocentromeres" that originally contained only single- or low-copy sequences. However, the emergence and evolution of the satellite repeats in centromeres has been elusive. Potato (Solanum tuberosum) provides a model system for studying centromere evolution because each of its 12 centromeres contains distinct DNA sequences, allowing comparative analysis of homoeologous centromeres from related species. We conducted genome-wide analysis of the centromeric sequences in Solanum verrucosum, a wild species closely related to potato. Unambiguous homoeologous centromeric sequences were detected in only a single centromere (Cen9) between the two species. Four centromeres (Cen2, Cen4, Cen7, and Cen10) in S. verrucosum contained distinct satellite repeats that were amplified from retrotransposon-related sequences. Strikingly, the same four centromeres in potato contain either different satellite repeats (Cen2 and Cen7) or exclusively single- and low-copy sequences (Cen4 and Cen10). Our sequence comparison of five homoeologous centromeres in two Solanum species reveals rapid divergence of centromeric sequences among closely related species. We propose that centromeric satellite repeats undergo boom-bust cycles before a favorable repeat is fixed in the population.

5.
An Acad Bras Cienc ; 85(1): 147-57, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23460443

RESUMO

The pollen morphology and exine structure of 17 species of Lippia L. were investigated in this work using light and scanning electron microscopy. Among the species studied, 14 showed tricolporate pollen grains, two had tri- and tetracolporate pollen grains and a single species exhibited, only tetracolporate pollen. The amb ranged from triangular to square, and the shape varied from oblate-spheroidal to prolate-spheroidal. Three different types of exine ornamentation were observed: psilate, scabrate and perforate. In addition to morphological data, we found positive association between the chromosome numbers and size of pollen grains, and also between the length and width of the colpi. The results indicate that the characteristics of pollen grains in Lippia may be used as an additional taxonomic character of the genus.


Assuntos
Cromossomos de Plantas/ultraestrutura , Lippia/classificação , Pólen/classificação , Brasil , Lippia/citologia , Lippia/ultraestrutura , Microscopia Eletrônica de Varredura , Pólen/citologia , Pólen/ultraestrutura , Especificidade da Espécie
6.
Chromosome Res ; 21(1): 5-13, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23250588

RESUMO

Interstitial telomeric repeats (ITRs) were reported in a number of animal and plant species. Most ITRs are organized as short tandem arrays and are likely evolutionary relics derived from chromosomal rearrangements and DNA repairs. However, megabase-sized ITR arrays were reported in Solanum species. Here, we report a fluorescence in situ hybridization (FISH) survey of ITRs in all representative diploid Solanum species, including potato, tomato, and eggplant. FISH revealed massive amplification of ITRs in the centromeric regions of chromosomes from the Solanum species containing the B and P genomes. A significant proportion of the ITR FISH signals was mapped within the primary constrictions of the pachytene chromosomes of Solanum pinnatisectum (B genome). In addition, some ITR sites overlapped with St49, a satellite repeat enriched in centromeric DNA sequences associated with CENH3 nucleosomes, in both A and B genome Solanum species. These results show that some ITR subfamilies have been amplified and invaded in the functional centromeres of chromosomes in Solanum species.


Assuntos
Centrômero/genética , Sequências Repetitivas de Ácido Nucleico/genética , Solanum/citologia , Telômero/genética , Sequência de Bases , Cromossomos , Reparo do DNA , Genoma de Planta , Heterocromatina/genética , Hibridização in Situ Fluorescente , Solanum/genética
7.
An Acad Bras Cienc ; 84(4): 1029-37, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23138630

RESUMO

The genus Lippia (Verbenaceae) comprise around 160 species spread out mainly in South and Central Americas with few African species, some of them with potential medicinal use. Brazil is one the most important centers of diversity with approximately 75% of the species described so far. Innumerous species are endemic and poorly studied especially at a cytological level. Here, chromosomal length, karyomorphology and chromosome asymmetry of twelve Brazilian species of Lippia were evaluated [L. alba (Miller) N.E.Brown, L. diamantinensis Glaz., L. florida Cham., L. hermanioides Cham., L. lacunosa Mart. & Schauer, L. lupulina Cham., L. pohliana Schauer, L. pseudothea (St. Hil) Schauer, L. rosella Moldenke, L. rotundifolia Cham., L. rubella Moldenke and L. sidoides Cham.]. The analysis suggested that the genus has a variable chromosome number (from 2n = 20 to 2n = 56) originated by dysploidy and polyploidy. This is the first description of chromosome morphology for 11 of the 12 Lippia species studied.


Assuntos
Cromossomos de Plantas/genética , Variação Genética , Cariotipagem , Lippia/genética , Brasil , Lippia/classificação , Especificidade da Espécie
8.
Plant Cell ; 24(9): 3559-74, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22968715

RESUMO

Centromeres in most higher eukaryotes are composed of long arrays of satellite repeats. By contrast, most newly formed centromeres (neocentromeres) do not contain satellite repeats and instead include DNA sequences representative of the genome. An unknown question in centromere evolution is how satellite repeat-based centromeres evolve from neocentromeres. We conducted a genome-wide characterization of sequences associated with CENH3 nucleosomes in potato (Solanum tuberosum). Five potato centromeres (Cen4, Cen6, Cen10, Cen11, and Cen12) consisted primarily of single- or low-copy DNA sequences. No satellite repeats were identified in these five centromeres. At least one transcribed gene was associated with CENH3 nucleosomes. Thus, these five centromeres structurally resemble neocentromeres. By contrast, six potato centromeres (Cen1, Cen2, Cen3, Cen5, Cen7, and Cen8) contained megabase-sized satellite repeat arrays that are unique to individual centromeres. The satellite repeat arrays likely span the entire functional cores of these six centromeres. At least four of the centromeric repeats were amplified from retrotransposon-related sequences and were not detected in Solanum species closely related to potato. The presence of two distinct types of centromeres, coupled with the boom-and-bust cycles of centromeric satellite repeats in Solanum species, suggests that repeat-based centromeres can rapidly evolve from neocentromeres by de novo amplification and insertion of satellite repeats in the CENH3 domains.


Assuntos
Centrômero/genética , DNA Satélite/genética , Evolução Molecular , Genoma de Planta/genética , Histonas/genética , Solanum tuberosum/genética , Sequência de Bases , Cromossomos de Plantas/genética , DNA de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Mutagênese Insercional , Nucleossomos/genética , Filogenia , Proteínas de Plantas/genética , Análise de Sequência de DNA
9.
G3 (Bethesda) ; 1(2): 85-92, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22384321

RESUMO

Subtelomeric domains immediately adjacent to telomeres represent one of the most dynamic and rapidly evolving regions in eukaryotic genomes. A common feature associated with subtelomeric regions in different eukaryotes is the presence of long arrays of tandemly repeated satellite sequences. However, studies on molecular organization and evolution of subtelomeric repeats are rare. We isolated two subtelomeric repeats, CL14 and CL34, from potato (Solanum tuberosum). The CL14 and CL34 repeats are organized as independent long arrays, up to 1-3 Mb, of 182 bp and 339 bp monomers, respectively. The CL14 and CL34 repeat arrays are directly connected with the telomeric repeats at some chromosomal ends. The CL14 repeat was detected at the subtelomeric regions among highly diverged Solanum species, including tomato (Solanum lycopersicum). In contrast, CL34 was only found in potato and its closely related species. Interestingly, the CL34 repeat array was always proximal to the telomeres when both CL14 and CL34 were found at the same chromosomal end. In addition, the CL34 repeat family showed more sequence variability among monomers compared with the CL14 repeat family. We conclude that the CL34 repeat family emerged recently from the subtelomeric regions of potato chromosomes and is rapidly evolving. These results provide further evidence that subtelomeric domains are among the most dynamic regions in eukaryotic genomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...